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Abstract
The integral representations for the eigenfunctions ofN particle quantum open
and periodic Toda chains are constructed within the framework of the quantum
inverse scattering method. Both periodic and open N -particle solutions have
essentially the same structure, being written as a generalized Fourier transform
over the eigenfunctions of the N − 1 particle open Toda chain with the kernels
satisfying the Baxter equations of second and first order, respectively. In the
latter case this leads to recurrent relations which result in a representation of
Mellin–Burnes-type solutions of an open chain. As a byproduct, we obtain the
Gindikin–Karpelevich formula for the Harish–Chandra function in the case of
the GL(N,R) group.

PACS numbers: 0365, 0220, 0230, 0550, 4520, 4530

1. Introduction

This paper is devoted to the well known quantum mechanical problem of finding the
simultaneous eigenfunction of a commuting set of Hamiltonians for the periodic Toda chain.
The first important step in this direction was made by Gutzwiller [1] who solved the problem
for the particular cases of N = 2, 3 and 4 particles and found such important phenomena as
quantization of the spectrum and separation of the multidimensional Baxter equation into the
product of one-dimensional equations. In fact, he performed the quantization of the periodic
Toda chain in terms of separated variables introduced by Flaschka and McLaughlin [2]. The
next important step was taken by Sklyanin [3] who constructed anR-matrix formalism for both
classical and quantum cases of Toda chains and introduced the algebraic method of separation
variables for an arbitrary number of particles. His approach drastically simplifies the derivation
of the Baxter equation and works for a wide spectrum of integrable models [4].

Our method of solving the spectral problem consists of an analytical re-interpretation
of Sklyanin’s algebraic ideas which allows one to find the integral representation for the
eigenfunctions of the periodic Toda chain as a kind of generalized Fourier transform with
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eigenfunctions for the open Toda chain [5]. In turn, this method can be treated as a natural
generalization of Gutzwiller’s original approach. The explicit solution for the eigenfunctions
of the open Toda chain plays a key role in this construction.

It has been discovered by Kostant [6] that the commuting set of Hamiltonians of an open
Toda chain coincides with the Whittaker model of the centre of a universal enveloping algebra.
Hence, the Whittaker functions are, in fact, eigenfunctions for the open Toda chain. In the
usual group-theoretical way the Whittaker function is defined as a matrix element between
compact and Whittaker vectors [7–9] in the principal series representation. There are many
obstacles to generalizing this approach to other quantum models or to loop groups.

The present approach to constructing the eigenfunctions for both periodic and open
chains is rather different [5, 10]: it is based on the quantum inverse scattering method for
the periodic Toda chain [3]. One of the interesting results of analytical calculations in the
R-matrix framework is the revealing of a recurrent relation between N and N − 1 particle
eigenfunctions for the open Toda chain (in fact, the idea of using a recurrent relation was
pointed out by Sklyanin in [11]; our recurrent relations are an explicit realization of such an
idea). This naturally leads to a new integral representation for the Weyl invariant Whittaker
functions compared with classical results [7–9]. This representation is quite explicit and very
useful for investigating the different asymptotics. In particular, the Gindikin–Karpelevich
formula [12] for the Harish–Chandra function [13] can be obtained in a very simple way for
the particular case of the GL(N,R) group. The eigenfunctions for the periodic Toda chain
are constructed in a rather explicit form and have essentially the same form as the recurrent
relation mentioned above. The integral formula for eigenfunctions can be considered as a
representation of the Whittaker functions for the ĜL(N) group at the critical level.

The present approach can be generalized to other quantum integrable models. For example,
a relativistic Toda chain is considered in [14].

2. The quantum Toda chain: a description of the model

2.1. Periodic spectral problem

The quantum N -periodic Toda chain is a multi-dimensional eigenvalue problem with N

mutually commuting Hamiltonians Hk(x1, p1; . . . ; xN, pN), (k = 1, . . . , N), where the
simplest Hamiltonians have the form

H1 =
N∑
k=1

pk

H2 =
∑
k<m

pkpm −
N∑
k=1

exk−xk+1

H3 =
∑
k<m<n

pkpmpn + · · ·

(2.1)

(xN+1 ≡ x1), etc and the phase variables xk, pk satisfy the standard commutation relations
[xk, pm] = ih̄δkm. The main goal is to find the solution to the eigenvalue problem

Hk�E = Ek�E k = 1, . . . , N (2.2)

with fast decreasing wavefunction �E . To be more precise, let us note that, due to translation
invariance, the solution to (2.2) has the following structure:

�E(x1, . . . , xN) = �̃E(x1 − x2, . . . , xN−1 − xN) exp

{
i

h̄
E1

N∑
k=1

xk

}
. (2.3)
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One needs to find the solution to (4.11) such that �̃E ∈ L2(RN−1). In equivalent terms, we
impose the requirement∫

f (E1)�E(x1, . . . , xN) dE1 ∈ L2(RN) (2.4)

for any smooth function f (y), (y ∈ R) with finite support.

2.2. GL(N − 1,R) spectral problem

It turns out that the solution to (2.2) and (2.4) can be effectively written in terms of the
wavefunctions corresponding to an open (N − 1)-particle Toda chain (quantum GL(N − 1,R)
chain). The Hamiltonians of the latter systems can be derived from (2.1) by letting
formally pN = 0, xN = ∞, thus obtaining exactly N − 1 commuting Hamiltonians
hk(x1, p1; . . . ; xN−1, pN−1) (k = 1, . . . , N − 1). Let γ = (γ1, . . . , γN−1) ∈ R

N−1,
x = (x1, . . . , xN−1) ∈ R

N−1. We consider the GL(N − 1,R) spectral problem

hkψγ(x) = σk(γ)ψγ(x) k = 1, . . . , N − 1 (2.5)

where σk(γ) are elementary symmetric functions.
Obviously, in the asymptotic region xk+1 � xk (k = 1, . . . , N − 2) all potentials vanish

and the solution to (2.5) is a superposition of plane waves. The problem is to find a solution
to (2.5) satisfying the following properties.

• The solution vanishes very rapidly

ψγ(x) ∼ exp

{
−2

h̄
e(xk−xk+1)/2

}
xk − xk+1 → ∞. (2.6)

• The function ψγ is Weyl-invariant, i.e. it is symmetric under any permutation

ψ...γj ...γk ... = ψ...γk ...γj .... (2.7)

• ψγ can be analytically continued to an entire function of γ ∈ C
N−1 and the following

asymptotics hold:

ψγ ∼ |γj |(2−N)/2 exp

{
− π

2h̄
(N − 2)|γj |

}
(2.8)

as | Re γj | → ∞ in a finite strip of the complex plane.

Properties (a)–(c) define a unique solution to the spectral problem (2.2).

3. Main results

Theorem 3.1. The following statements hold [5, 10].

• Let a set ‖γjk‖ be the lower triangular (N − 1) × (N − 1) matrix. The solution to
the spectral problem (2.5)–(2.8) can be written in the form of multiple Mellin–Barnes
integrals1:

ψγN−1,1,...,γN−1,N−1(x1, . . . , xN−1)

1 We identify the set γ with the last row (γN−1,1, . . . , γN−1,N−1).
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= (2πh̄)−(N−1)(N−2)/2∏N−2
k=1 k!

∫
C

N−2∏
n=1

∏n
j=1

∏n+1
k=1 h̄

(γnj−γn+1,k )/ih̄ �
(
γnj−γn+1,k

ih̄

)
∏n
j,k=1
j<k

∣∣∣�( γnj−γnkih̄

)∣∣∣2
× exp

{
i

h̄

N−1∑
n,k=1

xn

(
γnk − γn−1,k

)} N−2∏
j,k=1
j�k

dγjk (3.1)

where the integral should be understood as follows: first, we integrate on γ11 over the
line Im γ11 > max{Im γ21, Im γ22}; then we integrate on the set (γ21, γ22) over the lines
Im γ2j > maxm{Im γ3m} and so on. The last integrations should be performed on the set
of variables (γN−2,1 . . . , γN−2,N−2) over the lines Im γN−2,k > maxm{Im γN−1,m}.

• In the region xk � xk+1(k = 1, . . . , N − 1) the solution has the following asymptotics:

ψγ(x) =
∑
s∈W

φ(sγ)e
i
h̄
(sγ,x) + O

(
max

{
exk−xk+1

}N−1
k=1

)
(3.2)

where (· , ·) is a scalar product in R
N−1 and the summation is performed over the

permutation group; φ(γ) is a (renormalized) Harish–Chandra function

φ(γ) = h̄−2i(γ,ρ)/h̄
∏
j<k

�
(γj − γk

ih̄

)
(3.3)

where (γ,ρ) ≡ 1
2

∑N−1
m=1(N − 2m)γk .

• The functions (3.1) have the scalar product∫
RN−1

ψγ ′(x)ψγ(x) dx = µ−1(γ)

(N − 1)!

∑
s∈W

δ(sγ − γ ′) (γ,γ ′ ∈ R
N−1) (3.4)

and obey the completeness condition∫
RN−1

µ(γ)ψγ(x)ψγ(y) dγ = δ(x − y) (3.5)

where

µ(γ) = (2πh̄)1−N

(N − 1)!

∏
j<k

∣∣∣∣�(γj − γk

ih̄

)∣∣∣∣−2

(3.6)

is the Sklyanin measure [3].

The eigenfunctions for the periodic chain are constructed as a kind of Fourier transform with
the function (3.1). Let

tN (λ; E) =
N∑
k=0

(−1)kλN−kEk (3.7)

and ej denotes the j th basis vector in R
N−1.

Theorem 3.2. The solution to the spectral problem (2.2) and (2.4) can be represented as the
integral over real variables γ = (γ1, . . . , γN−1) in the following form:

�E(x, xN) = 1

2π

∫
RN−1

µ(γ)C(γ; E)�γ,E1(x, xN) dγ (3.8)

where
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• the function �γ,E1(x, xN) is defined in terms of the solution (3.1) to the GL(N − 1,R)
spectral problem:

�γ,E1(x, xN) = ψγ(x) exp

{
i

h̄

(
E1 −

N−1∑
m=1

γm

)
xN

}
(3.9)

• the function C(γ; E) is the solution of the multi-dimensional Baxter equations

tN (γj ; E)C(γ; E) = iNC(γ + ih̄ej ; E) + i−NC(γ − ih̄ej ; E) (3.10)

which is a symmetric entire function in γ-variables with the asymptotics

C(γ; E) ∼ |γk|−N/2 exp

{
−πN |γk|

2h̄

}
(3.11)

as Re γk → ±∞ in the strip | Im γk| � h̄.

The above restrictions imposed on the solution to (3.10) are a reformulation of the
quantization condition (2.4) on the level of a γ-representation. To obtain the explicit integral
form for the eigenfunctions, we use the solution to (3.10) and (3.11) in the Pasquier–Gaudin
form [15] (see section 7 below)

C(γ; E) =
N−1∏
j=1

c+(γj ; E)− ξ(E)c−(γj ; E)∏N
k=1 sinh π

h̄

(
γj − δk(E)

) (3.12)

where the entire functions c±(γ ) are two Gutzwiller’s solutions [1] of the one-dimensional
Baxter equation

t (γ ; E)c(γ ; E) = i−Nc(γ + ih̄; E) + iNc(γ − ih̄; E) (3.13)

and the parameters ξ(E), δ = (δ1(E), . . . , δN(E) ) satisfy the Gutzwiller conditions (the
energy quantization) [1, 15] (see section 7 below). Then the multiple integral (3.8) can be
evaluated explicitly. Let y = (y1, . . . , yN) ∈ R

N be an arbitrary vector. We denote by
y(s) ≡ (y1, . . . , ys−1, ys+1, . . . , yN) the corresponding vector in R

N−1.

Theorem 3.3. Assuming that δj (E) �= δk(E), the solution (3.8) can be written (up to an
inessential numerical factor) in the equivalent form

�E(x, xN) =
N∑
s=1

(−1)N−s ∑
n(s)∈ZN−1

&(δ(s) + ih̄n(s)) C+(δ
(s) + ih̄n(s)) �δ(s)+ih̄n(s),E1

(x, xN)

(3.14)

where

C+(γ) ≡
N−1∏
j=1

c+(γj ; E) (3.15)

and &(γ) = ∏
j>k(γj − γk) is the Vandermonde determinant.

Remark 3.1. ForN = 2, 3 and 4, formula (3.14) reproduces the results obtained by Gutzwiller
[1].



2252 S Kharchev and D Lebedev

4. R-matrix approach

The Toda chain can be nicely described using the R-matrix approach [3]. It is well known that
the Lax operator

Ln(λ) =
(
λ− pn e−xn

−exn 0

)
(4.1)

satisfies the commutation relations

R(λ− µ)(Ln(λ))⊗ I )(I ⊗ Ln(µ)) = (I ⊗ Ln(µ))(Ln(λ)⊗ I )R(λ− µ) (4.2)

where

R(λ) = I ⊗ I +
ih̄

λ
P (4.3)

is a rational R-matrix. The monodromy matrix

TN(λ)
def= LN(λ) . . . L1(λ) ≡

(
AN(λ) BN(λ)

CN(λ) DN(λ)

)
(4.4)

satisfies the analogous equation

R(λ− µ)(T (λ)⊗ I )(I ⊗ T (µ)) = (I ⊗ T (µ))(T (λ)⊗ I )R(λ− µ). (4.5)

In particular, the following commutation relations hold:

[AN(λ),AN(µ)] = [CN(λ), CN(µ)] = 0 (4.6)

(λ− µ + ih̄)AN(µ)CN(λ) = (λ− µ)CN(λ)AN(µ) + ih̄AN(λ)CN(µ) (4.7)

(λ− µ + ih̄)DN(λ)CN(µ) = (λ− µ)CN(µ)DN(λ) + ih̄DN(µ)CN(λ). (4.8)

From (4.5) it can be easily shown that the trace of the monodromy matrix

t̂N (λ) = AN(λ) +DN(λ) (4.9)

satisfies the commutation relations [̂t(λ), t̂(µ)] = 0 and is a generating function for the
Hamiltonians of the periodic Toda chain:

t̂N (λ) =
N∑
k=0

(−1)kλN−kHk. (4.10)

We reformulate the spectral equations (2.2) as follows:

t̂N (λ)�E = tN (λ; E)�E (4.11)

where

tN (λ; E) =
N∑
k=0

(−1)kλN−kEk. (4.12)

On the other hand, it can be easily shown that the operator

AN−1(λ) ≡
N−1∑
k=0

(−1)kλN−k−1hk(x1, p1; . . . ; xN−1, pN−1) (4.13)

is nothing but the generating function for the Hamiltonians hk of the GL(N − 1) Toda chain.
Therefore, the GL(N − 1,R) spectral equations can be written in the form

AN−1(λ)ψγ(x) =
N−1∏
m=1

(λ− γm)ψγ(x). (4.14)
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Using the obvious relation

CN(λ) = −exNAN−1(λ) (4.15)

one obtains, as a trivial corollary of (4.14),

CN(γj )ψγ(x) = 0 ∀ γj ∈ γ. (4.16)

Remark 4.1. Equations (4.16) are an analytical analogue of the notion of ‘operator zeros’
introduced by Sklyanin [3].

5. Eigenfunctions for the open Toda chain

Suppose that the solution to (4.14) satisfying (2.6)–(2.8) is given. Using the commutation
relations (4.7) and (4.8) together with (4.16), it is easy to show that the following relations
hold:

AN(γj )ψγ = i−N e−xNψγ−ih̄ej (5.1a)

DN(γj )ψγ = iNexNψγ+ih̄ej (5.1b)

(j = 1, . . . , N − 1) where ej are j th basis vectors in R
N−1. Note that (5.1b) is a corollary of

(5.1a) since the quantum determinant of the monodromy matrix (4.4) is unity.
Let us introduce the key object, i.e. the auxiliary function

�γ,ε(x1, . . . , xN)
def= ψγ(x) exp

{
i

h̄

(
ε −

N−1∑
m=1

γm

)
xN

}
(5.2)

where ε is an arbitrary parameter. From (4.14), (4.15) and (5.1) it is readily seen that this
function satisfies the equations

CN(λ)�γ,ε = −exN
N−1∏
j=1

(λ− γj ) �γ,ε (5.3a)

AN(λ)�γ,ε =
(
λ− ε +

N−1∑
m=1

γm

) N−1∏
j=1

(λ− γj ) �γ,ε + i−N
N−1∑
j=1

�γ−ih̄ej ,ε

∏
m �=j

λ− γm

γj − γm
(5.3b)

DN(λ)�γ,ε = iN
N−1∑
j=1

�γ+ih̄ej ,ε

∏
m �=j

λ− γm

γj − γm
. (5.3c)

In particular,

t̂N (γj )�γ,ε = iN�γ,ε + i−N�γ,ε . (5.4)

The problem is to find the corresponding solution for the GL(N,R) Toda chain using the
above information, i.e. in terms of the function �γ,ε(x) construct the Weyl invariant function
ψλ1,...,λN (x1, . . . , xN) satisfying the equations

AN(λ)ψλ1,...,λN =
N∏
k=1

(λ− λk) ψλ1,...,λN (5.5a)

AN+1(λn)ψλ1,...,λN = i−N−1 exN+1ψλ1,...,λn−ih̄,...,λN (n = 1, . . . , N) (5.5b)

and obeying conditions similar to (2.6)–(2.8).
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Lemma 5.1 (See [10]). Let �γ,ε(x, xN) be the auxiliary function (5.2). Let λ =
(λ1, . . . , λN) ∈ C

N be the set of indeterminates. Let

µ(γ) = (2πh̄)1−N

(N − 1)!

∏
j<k

∣∣∣∣�(γj − γk

ih̄

)∣∣∣∣−2

(5.6)

Q(γ1, . . . , γN−1|λ1, . . . , λN) =
N−1∏
j=1

N∏
k=1

h(γj−λk)/ih̄ �
(γj − λk

ih̄

)
. (5.7)

Then the Weyl invariant solution to the spectral problem (5.5a) and (5.5b) with the properties
discussed above is given by the recurrent formula

ψλ1,...,λN (x1, . . . , xN) =
∫

C
µ(γ)Q(γ; λ)�γ;λ1+···+λN (x1, . . . , xN) dγ (5.8)

where the integration is performed along the horizontal lines with Im γj > maxk {Im λk}.

Proof. One needs to calculate the action of the operators AN(λ) and

AN+1(λ) = (λ− pN+1)AN(λ) + e−xN+1CN(λ) (5.9)

on the function (5.8) using the formulae (5.3b) and (5.5a), (5.3a). The shifted contours can be
deformed to the original ones by using the fact that the integrand in (5.8) is an entire function
which quickly decreases in any finite horizontal strip of the complex plane as | Re γj | → ∞.
The last step is to use the difference equations for the parts of the integrand with respect to the
shifts ±ih̄ of parameters γm and λk . �

Proof of theorem 3.1. The proof of (3.1) is a straightforward resolution of the recurrent
relations (5.8) starting with the trivial eigenfunction ψγ11(x1) = exp{ i

h̄
γ11x1}. Obviously, this

function is symmetric under permutation of the parameters γ. The asymptotics (2.6) can be
proved using the steepest-descent method. Using the Stirling formula for the �-functions as
γN−1,k ≡ γk → ±∞, it is easy to see that the asymptotics (2.8) hold. Hence, equation (3.1)
is an appropriate solution to the spectral problem.

Furthermore, formula (3.2) can be proved as follows. The integrand in (5.8) decreases
exponentially as γj → −i∞ (j = 1, . . . , N − 1) and, consequently, the integrals over large
semi-circles in the lower half-plane vanish. Using the Cauchy formula to calculate the integral
(5.8) in the asymptotic region xk+1 � xk (k = 1, . . . , N − 1), it is easy to see that the
asymptotics of the functionψγ are determined precisely in terms of the corresponding Harish–
Chandra function (3.3).

The scalar product (3.4) is a consequence of the Plancherel formula proved in [16] for the
SL(N,R) case. Formula (3.5) can be proved by induction. �

Remark 5.1. In [5] (equations (4.18) and (4.7)) the eigenfunction (3.1) was constructed
in terms of a Weyl-invariant Whittaker function (coincidence can be shown by comparing
asymptotics and analytical properties of both functions). The Whittaker function possesses a
standard integral representation corresponding to the Iwasawa decomposition of a semisimple
group (see, for example, [9]). It differs from our one. So one can consider the representation
(3.1) as a new one for the Whittaker function.
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6. Periodic chain: γ-representation, eigenfunctions and the Plancherel formula

Let�E(x, xN) be the quickly decreasing solution of the problem (4.11). We define the function
C(γ; E) by the generalized Fourier transform

δ(E1 − ε) C(γ; E) =
∫

RN−1
�E(x, xN)�γ,ε(x, xN) dx dxN . (6.1)

Lemma 6.1. The function C(γ) possesses the following properties:

(a) it is a symmetric function with respect to the γ-variables;
(b) it is an entire function of γ ∈ C

N−1;
(c) the function C(γ) obeys the asymptotics

C(γ; E) ∼ |γk|−N/2 exp

{
−πN |γk|

2h̄

}
(6.2)

as Re γk → ±∞ in the strip | Im γk| � h̄;
(d) the function C(γ) satisfies the multi-dimensional Baxter equation

t (γj ; E)C(γ; E) = iNC(γ + ih̄ej ; E) + i−NC(γ − ih̄ej ; E) (6.3)

where t (γ ; E) is defined by (4.12).

Proof. The symmetry of the function C(γ) is obvious. We present here only a sketch of the
proof of statements (b) and (c). Statement (b) follows from the assertion that the auxiliary
function�γ,ε is an entire one, while the solution of the periodic chain vanishes very rapidly as
|xk − xk+1| → ∞ 2. (c) The asymptotics (6.2) are a combination of two factors. The first one
comes from the asymptotics (2.8), while the additional factor ∼ |γk|−1 exp{−π |γk|/h̄} results
from the stationary phase method while calculating the multiple integral including the function
(3.1). The calculation is based heavily upon the exact asymptotics of the function �E(x, xN)

as |xk − xk+1| → ∞.
The proof of (d) is simple. Using the definition (4.11) and integrating by parts (evidently,

boundary terms vanish), one obtains

δ(E1 − ε) t (γj ; E)C(γ) ≡
∫

RN−1

{̂
t(γj )�E(x, xN)

}
�γ,ε(x, xN) dx dxN

=
∫

RN−1
�E(x, xN) t̂(γj )�γ,ε(x, xN) dx dxN . (6.4)

Taking into account the relation (5.4), the Baxter equation (6.3) follows from definition (6.1).
�

Proof. Now we prove theorem 3.2. Using the completeness condition∫
RN

µ(γ)�γ,ε(x, xN)�γ,ε(y, yN) dγ dε = 2πh̄δ(x − y)δ(xN − yN) (6.5)

which is a corollary of (3.5), the inversion of formula (6.1) results in the expression

�E(x, xN) = 1

2π

∫
RN−1

µ(γ)C(γ; E)�γ,E1(x, xN) dγ. (6.6)

2 Actually, the boundary conditions have the same importance here as the requirement of compact support in the
theory of analytic continuation for the usual Fourier transform.
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The integral (6.6) is correctly defined. Indeed, the measure (3.6) is an entire function.
Therefore, there are no poles in the integrand. Moreover,

µ(γ) ∼ |γk|N−2 exp

{
π

h̄
(N − 2)|γk|

}
(6.7)

as |γk| → ∞. Taking into account the asymptotics (2.8) and (6.2) one concludes that the
integrand has the behaviour ∼ |γk|−1 exp{−π |γk|/h̄} as |γk| → ∞. Therefore, the integral
(6.5) is convergent. One can directly prove the spectral problem (4.11) by calculating the
action of the operator t̂N (λ) = AN(λ) +DN(λ) on the right-hand side of (6.6) with the help of
the formulae (5.3b) and (5.3c). The calculation is performed similarly to those of lemma 5.1,
using the analytical properties of the integrand and the Baxter equation (6.3) (see [5] for
details).

The last step is to prove that the function (6.6) satisfies the integrability requirement (2.4).
Using the scalar product∫

RN

�γ ′,ε′(x, xN)�γ,ε(x, xN) dx dxN = (2πh̄)
µ(γ)

(N − 1)!
δ(ε − ε′)

∑
s∈W

δ(sγ − γ ′) (6.8)

one can write the Plancherel formula

2πh̄
∫

RN

�E′(x, xN)�E(x, xN) dx dxN = δ(E1 − E′
1)

∫
RN−1

µ(γ) C(γ; E′)C(γ; E) dγ. (6.9)

The integral on the right-hand side of (6.9) is absolutely convergent due to asymptotics (6.2)
and (6.7). Hence, the norm ‖�E‖ is finite modulo the GL(1) δ-function δ(E1 − E′

1) (see the
corresponding factor in (2.3) which leads to this function) and the requirement (2.4) is fulfilled.
Hence, theorem 3.2 is proved. �

7. Solution of the Baxter equation

It is well known [1, 15] (see also [5] for details) that the solution to the Baxter equation (3.10)
with the asymptotics (3.11) can be written in the following separated form:

C(γ; E) =
N−1∏
j=1

c+(γj ; E)− ξc−(γj ; E)∏N
k=1 sinh π

h̄

(
γj − δk)

(7.1)

where ξ and δk are arbitrary constants and the entire functions c±(γ ) are defined in terms of
N × N determinants:

c+(γ ) = 1∏N
k=1 h̄

−iγ /h̄�(1 − i
h̄
(γ − λk))

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1

t (γ + ih̄)
0 . . . . . . . . .

1

t (γ + 2ih̄)
1

1

t (γ + 2ih̄)
0 . . . . . .

0
1

t (γ + 3ih̄)
1

1

t (γ + 3ih̄)
0 . . .

. . . . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(7.2a)
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c−(γ ) = 1∏N
k=1 h̄

iγ /h̄�(1 + i
h̄
(γ − λk))

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . . . . . . . . . . . . .

. . . 0
1

t (γ − 3ih̄)
1

1

t (γ − 3ih̄)
0

. . . . . . 0
1

t (γ − 2ih̄)
1

1

t (γ − 2ih̄)

. . . . . . . . . 0
1

t (γ − ih̄)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(7.2b)

and λk ≡ λk(E) are the roots of the polynomial t (γ ) ≡ tN (γ ; E).
On the other hand, the solution (7.1) is not an entire function in general since the

denominator in (7.1) has an infinite number of poles at γ = δk + ih̄nk , nk ∈ Z, k = 1, . . . , N .
The poles are cancelled only if the following conditions hold:

c+(δk + ih̄nk) = ξc−(δk + ih̄nk). (7.3)

In turn, this means that the Wronskian

W(γ ) = c+(γ )c−(γ + ih̄)− c+(γ + ih̄)c−(γ ) (7.4)

vanishes at γ = δk +ih̄nk . The Wronskian is an ih̄ periodic function and obtains exactlyN real
roots δk(E) [1]. Therefore, the solution (7.1) has no poles if one takes δk = δk(E) provided
that the constant ξ is chosen in such a way that

ξ = c+(γ )

c−(γ )

∣∣∣∣
γ=δk(E)

k = 1, . . . , N. (7.5)

Hence, one arrives at the following:

Lemma 7.1 (See [15]). The function

C(γ; E) =
N−1∏
j=1

c+(γj ; E)− ξ(E)c−(γj ; E)∏N
k=1 sinh π

h̄

(
γj − δk(E)

) (7.6)

where δk(E) are real zeros of the Wronskian (7.4) and the constant ξ is chosen according to
(7.5), satisfies the conditions of lemma 6.1.

The quantization conditions

c+(δ1)

c−(δ1)
= · · · = c+(δN)

c−(δN)
(7.7)

determine the energy spectrum of the problem. They have been obtained for the first time by
Gutzwiller [1] using quite a different method.

Proof. To prove theorem 3.3, one should substitute the solution (7.6) into the integral formula
(3.8) and calculate the residues coming from individual terms

c±(γj ; E)∏N
k=1 sinh π

h̄

(
γj − δk(E)

) . (7.8)

The result is exactly the sum over all possible poles of expressions (7.8) and essentially
coincides with (3.14) (see the careful analysis in [5]). �
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